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It is shown that numerical simulations of fully-developed plasma turbulence can be suc-
cessfully parallelized in time using the parareal algorithm. The result is far from trivial,
and even unexpected, since the exponential divergence of Lagrangian trajectories as well
as the extreme sensitivity to initial conditions characteristic of turbulence set these type
of simulations apart from the much simpler systems to which the parareal algorithm has
been applied to this day. It is also shown that the parallel gain obtainable with this method
is very promising (close to an order of magnitude for the cases and implementations
described), even when it scales with the number of processors quite differently to what
is typical for spatial parallelization.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In magnetically confined hot plasmas with interest for fusion research, such as those confined in a tokamak or a stella-
rator, the disparity in timescales between the microturbulence responsible for the transport processes and the plasma con-
finement times is of the order of 106–109. Thus, in order to properly capture the transport dynamics of these strongly
turbulent plasmas, they would need to be simulated for thousands or even tens of thousands of turbulent decorrelation
times. Such a task is currently well beyond the reach of even the most powerful supercomputers. As a result, simplified ap-
proaches are used in which the microturbulence is only evolved for a few tens of decorrelation times under the assumption
that the dynamics become decorrelated after this timescale, together with the assumption that plasma profiles can be as-
sumed ‘frozen’ during these timescales. These approximations enable a description via effective transport coefficients de-
rived from these restricted simulations, whose validity should however be checked a posteriori, whenever possible. But
even with these simplifying approximations, these simulations are still extremely challenging from a computational point
of view [1]. On the one hand, because parallelization along the space domain reaches saturation (typically, at a few thousand
CPUs in most codes, as a result of Amdahl’s law and inter-processor communication overflow), for which a further increase of
the number of processors beyond a certain point does not contribute to enhanced speed-up. On the other hand, higher spa-
tial resolutions imply the use of smaller time steps for numerical stability reasons. This makes that reaching the needed sim-
ulation times takes much longer, due to the serial nature of the temporal coordinate. The situation becomes even more
dramatic in cases in which the aforementioned simplifications may not be justified, as might be the case when turbulence
is near-marginal [2], or in the presence of strong sheared flows [3].
. All rights reserved.
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It thus seems self-evident that if these turbulent simulations could also be parallelized in time (in addition to their spatial
parallelization), it would enable a more efficient utilization of the many processors currently available in supercomputers
while, at the same time, allowing the running of much longer simulations in considerably shorter wallclock times. This
would also open the path to including a more complete set of the physics in the simulations in the near future, maybe even
the full transport dynamics. Various approaches have been proposed over the years to decompose the time direction when
solving a partial differential equation [4–13], although with varying degrees of success. Of these, the parareal (parallel in
time) algorithm, which we explore in this paper, was first proposed by Lions et al. [14] and has received an increasing
amount of attention in recent years. It has been successfully applied to a number of relatively simple problems, like molec-
ular dynamics simulations [15], linear and nonlinear parabolic ordinary differential equations [16,17], stochastic ordinary
differential equations [18], reservoir simulations [19] and even, the laminar regime of the Navier–Stokes equation [20].
The scheme has also been applied very recently to the Princeton ocean model, dominated by convection, although with a
rather modest success [21].

In this paper, we report the first (and very promising) results regarding the parallelization of the temporal direction of
numerical simulations of turbulent plasmas using the parareal algorithm. To the best of our knowledge, the parareal tech-
nique has never been applied to a fully-developed turbulent problem, although it has been used successfully with low-
dimensional chaotic systems, such as the Lorenz system [22]. Turbulent systems represent a very challenging case of study,
and there are in fact many reasons to expect failure. Indeed, the parareal algorithm parallelizes along time, despite the
sequential nature of the time domain, using a predictor–corrector approach. Since the corrector step carried out at each cycle
of the algorithm feeds on the results of the uncoupled predictor runs, it might be expected that the strong sensitivity to ini-
tial conditions and exponential divergent growth of uncertainties characteristic of turbulence should deteriorate or even im-
pede the convergence of the algorithm, in contrast to what happens in a more laminar regime. In this paper we show that
this is not the case, and that the parareal method, when properly tuned, can be applied successfully to fully-developed tur-
bulent simulations and yields considerable parallel speed-ups (an order of magnitude, for the cases studied here).

In order to avoid the complexities associated with the toroidal geometries characteristic of fusion plasmas, we have cho-
sen to apply the parareal method to a simpler dissipative-trapped electron mode (DTEM) turbulence model in a doubly-peri-
odic slab geometry. Some kind of drift wave turbulence is the most probable candidate for governing transport in these
plasmas and thus, this model has been studied extensively [23–26]. For its numerical implementation we use the BETA code
[23], which uses a pseudo-spectral approach and advances the system in time using an implicit, preconditioned integrator.
BETA routinely provides with fully-developed turbulent states, with large positive Lyapunov exponents. It thus provides an
excellent platform to explore and test the merits of the parareal method in this context, before embarking on its implemen-
tation in any of the state-of-the-art codes used by the fusion community. The paper is thus organized as follows. Section 2
briefly reviews the parareal algorithm. The physics of the DTEM model are then described in Section 3. Section 4 introduces
an analysis of the parallel performance to be expected from the algorithm, which will clarify its strong and weak points as
well as guide us through its tuning. Next, Section 5 comprises the numerical results obtained in this study. Finally, some con-
clusions are drawn in Section 6.
2. The parareal algorithm

In this section, we provide a review of the basic algorithm, including some modifications of our own devising that are
appropriate to the turbulent context and yield a significant boost in its performance.

2.1. Review of the algorithm

The parareal algorithm is based on a predictor–corrector iterative approach. It is best understood by describing its appli-
cation to a single ordinary differential equation of the type:
dk
dt
¼ Aðk; tÞ; kð0Þ ¼ k0; ð1Þ
where A is an arbitrary, possibly nonlinear, function. Let us assume that we are interested in finding the value of k at some
later time T > 0. Let us also assume that we can numerically advance this equation from an arbitary time t 2 [0,T] to time
t + dt by means of several discretization schemes. We will formally write this advance using;
kðt þ dtÞ ¼ Ft
dt � kðtÞ; ð2Þ
where F represents our advancing operator, acting on the appropriate space to which k belongs, and dependent on the dis-
cretization scheme chosen (the superscript t is used here to denote that the operator may depend explicitly on t, although we
will drop it in what follows). Clearly, to go from the initial time to T, we will need to apply F as many times as required given
the value of dt.

The parareal algorithm assumes that there are two different advancing operators (or solvers) at our disposal, that we will
denote as F and G. The distinction between these two solvers is that G is much faster (usually at the price of being coarser and
more inaccurate) than F, the one we are really interested in using for our problem but which is computationally too expen-
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sive to be run serially between the initial time and T. In the parareal algorithm, G is run serially between t = 0 and T, whilst F
is always run in parallel. Let us see how this works.

Let there be N processors, denoted by P0,P1,P2,P3, . . .,PN�1. Let the total simulation time, T, be divided into N smaller
chunks of size DT = T/N. In what follows, the i index is used to represent the ith instant of time defined as ti = i�Dt for
i = 0,1,2, . . .,N. The index k = 0,1,2, . . . represents the iteration number in the parareal cycle. Then, kk

i represents the solution
at time ti at the kth iteration of the parareal cycle. The initial value, that is already given, is then denoted by k0

0.
The steps involved in the parareal scheme are as follows:

� Iteration k = 0:
P0 uses G serially to calculate initial values k0

i for the start time of every time chunk, ti.
� Iteration k > 0:

Step 1 : Each processor (i.e., Pj) then separately applies F to propagate the solution, starting with the initial values pro-
vided by G (i.e., kk�1

j ), between the initial (tj) and final time (tj+1) of its respective time chunk. This process is
of course carried out in parallel. The result of this propagation is forwarded to the next processor in line (Pj+1).

Step 2 : G is now applied as a sequential (but not continuous) process, using the parareal prescrition to update the initial
value at each time chunk:
kkþ1
iþ1 ¼ GDTðkkþ1

i Þ þ FDTðkk
i Þ � GDTðkk

i Þ: ð3Þ
Note that this part of the algorithm cannot be done in parallel, because of the first term on the right hand side.
Note also that the second and third terms have already been obtained in previous steps and/or iterations.

Step 3 : Check for convergence. The measure of convergence is discussed in the next subsection. If the solution is con-
verged for all chunks, the cycle is exited. Otherwise, another iteration of the parareal cycle is done which, in
the standard implementation, involves all chunks. This will not be the case in our simulations, as discussed in
the next subsection.

Some remarks are useful at this point. First, in order for the parareal cycle to converge, certain mathematical conditions
must be satisfied by G and F, which were made explicit in Lions et al. seminal paper and appear as specific conditions on the
boundedness of the norm of the difference between the two solvers in an appropriate mathematical space [14]. Regretfully, it
is very difficult (if not impossible) to translate these conditions into a practical prescription for any particular problem. Trial
and error, combined with experience, seems to be the most reliable guide to choose G. However, note that in practice, the
parareal algorithm will always converge in at most N interactions, independently of how ’badly’ G is chosen. This happens
because, at the end of iteration k = 1, both P0 and P1 already have the correct value of the solution, since F has been used in
the first processor to propagate the exact initial condition at t = 0. For the same reason, at k = j, all processors P0, . . .,Pj already
have the correct value. And so on. However, note also that if N cycles are finally needed to converge to the exact solution, we
would have used the same (or more, including communications and time for G) wallclock time that if we had run the sim-
ulation serially with F. So no parallel speed-up is gained, and we would have done N times more computing work! Thus,
parareal works only if convergence is achieved for a number of cycles K much smaller than N, implying that at each iteration
more than one chunk needs to converge on average. Whether this is the case or not will depend on our ability to choose G for
a given F.

2.2. Metric for convergence

Convergence is achieved whenever some convergence measure reduces below a certain prescribed tolerance. Following
with our previous example, in which kk(t) represents the solution at time t in the kth iteration of the parareal algorithm, we
define the local convergence measure as,
rk
i ¼

Z ti

ti�1

kkðsÞ � kk�1ðsÞ
��� ���

kk�1ðsÞ
��� ��� ds: ð4Þ
That is, the average relative error between the solution at the kth and the (k � 1)th parareal cycles integrated over each
chunk i. It should be noted that we have purposely avoided using the exact serial solution that F would provide, since it
is not useful in practice due to the fact that, in most cases of interest it will not be known, since the main aim of the parareal
scheme is to replace calculations involving serial processors! The solution is then converged up to time chunk I if,
rk
i < tol; 8i 6 I: ð5Þ
Typically, convergence occurs in an orderly fashion, starting with the first chunk and propagating to later times due to the
fact that errors are propagated (and enhanced) in that direction by the parareal cycle. This fact has prompted us to modify
the standard parareal algorithm in the following way: instead of ’correcting’ the solution at each parareal cycle starting with
the first chunk, we perform the ’correction’ only for those chunks corresponding to times larger than the last converged chunk time.
In this way, one still obtains a reasonably converged solution, and avoids at the same time resonances that may deteriorate



D. Samaddar et al. / Journal of Computational Physics 229 (2010) 6558–6573 6561
the solution at already converged chunk times as observed in some problems [12]. With this modification, the cases that will
be discussed in Section 5 have been made to converge using up to four times less parareal cycles than with the original
prescription.

2.3. Particulars of the application of the parareal method to fully-developed turbulent simulations

We now discuss some crucial issues pertaining to turbulent systems which are relevant to the application of the parareal
algorithm to the BETA simulations. First, it should be noted that for any numerical simulation of a very high dimensional
chaotic system with positive Lyapunov exponents, it is impossible to define a unique solution. The reason is that these sys-
tems exhibit exponential Lagrangian (i.e., along turbulent trajectories) divergence and as a result the final solution depends
very sensitively on the initial values. So sensitively that, in fact, a serial run done with the same parameters and numerical
scheme, but compiled using two different compilers or run on two different machines unavoidably leads to different results
when the simulation time is long enough. But note that this fact does not make the solutions worthless because even when
different, they are statistically identical. What we mean by that is that the fluctuations exhibit the same statistical and cor-
relation properties at saturation, even if the fluctuations are not identical when compared point-by-point at every time. That
is, if one compares the probability distribution function (pdf) of the fluctuations at any point, or the temporal or spatial cor-
relation functions, all these solutions will give the same results. The reason is ultimately the fact that the Eulerian (i.e., fixed
point) fluctuations are bounded by the finite saturated fluctuation levels, which are themselves limited by the finite amount
of free energy available to the system. This fact translates into the simulations having well-defined statistical properties. So,
although the Lagrangian trajectories diverge due to their high sensitivity to initial conditions, the solutions are statistically
indistinguishable. And this is ultimately what matters, specially when what one cares about is the mean transport or dynam-
ics of these simulations. In the case of the parareal scheme just sketched, this observation is essential, because the scheme
matches together solutions obtained at different chunks. If the mismatch at those connecting times could grow exponen-
tially without bound, it might prevent any convergence of the method (in fact, this is why it has been suggested that turbu-
lence and parareal would be a deadly mix). But on the contrary, the same boundedness that exists for Eulerian fluctuations
holds also for these mismatches. As we will show in what follows, a solution can be found by the parareal method. And it is
very easy to see that this parareal solution, although not identical to the serial one obtained starting from the same initial
values, is statistically identical in the sense previously described.

A second important aspect regarding the parareal parallelization of turbulent simulation has to do with the convergence
measure. As discussed in the previous subsection, the traditional parareal method computes the relative error between the
solution of the problem at two successive parareal cycles. In the case of a turbulent simulation, the number of degrees of free-
dom is enormous (for instance, �6 � 105 for the BETA simulations used in this paper), which would make the construction of
the convergence measure rather cumbersome. However, it turns out that this is not needed. In fact, we will show that it is
enough to require convergence in one global quantity. In our case, the time history of the energy in the system, defined as:
E/ðtÞ ¼
X

k

/kðtÞ � /�kðtÞ; ð6Þ
where /k(t) is the (complex) amplitude of the Fourier harmonic with wave number k (see Section 3 for details). Then we will
show that, if the relative error between successive cycles of the total energy is less than a prescribed tolerance, all the indi-
vidual modes containing enough energy to affect that tolerance value are also converged. This is a remarkable result, which
simplifies the calculation enormously. It is ultimately due to the fact that in a fully-developed turbulent system, the relative
energy fluxes between any pair of modes are set by the non-linearities, which endows the system with a very strong and
resilient coupling [27]. Thus, convergence in one quantity is only possible if all others converge simultaneously, so that
the relations imposed by this coupling are preserved. We indeed observed this in our simulations, as will be shown later.

3. The model

The parareal algorithm is applied in what follows to numerical simulations of a reduced model, which is a paradigm of
plasma drift waves derived in the limit of long wavelengths and a two-dimensional (x � y) slab geometry. This limit of the
DTEM model has been extensively studied in the plasma physics literature [23,25]. It assumes that a uniform magnetic field
that confines the plasma exists perpendicular to the slab (i.e., along ẑ), and that all profile gradients are directed along the x̂
direction. These gradients are responsible for the existence of drift waves that propagate along the ŷ direction. The under-
lying instability is assumed to be the dissipative-trapped electron mode (DTEM). Plasma ions are treated as a cold fluid, while
electrons are assumed to satisfy the Boltzmann relation except for those trapped in the magnetic ripple, which contribute to
the dynamics in a way that allows the drift waves to grow unstable. The model can be reduced to a single equation for the
potential fluctuations by assuming quasi-neutrality and using the long-wavelength limit to retain only the so-called E � B
non-linearity:
@

@t
ð1� q2

sr2
?Þ~/þ D

@2 ~/
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Here, ~/ is the fluctuating potential. VD ¼ �1=2ðcTi=eBÞL�1
n represents the effective diamagnetic drift velocity, Ti being the ion

temperature, ��1/2 the fraction of trapped electrons, B the magnetic field strength and Ln the density gradient scale length.
D ¼ V2

D=4meff ;e, where meff,e is the effective collision frequency of ion–electron collisions. The last term on the left hand side of
Eq. (7) represents the E � B non-linearity, the second one is the instability drive and the third one is the one which causes the
drift waves to propagate along the y direction.

The numerical solution of this model is done using the spectral code BETA [23]. The Fourier transform of Eq. ( 7) has the
form:
d~/k

dt
�

Dk2
y

1þ q2
s k2
?

~/k þ
iVDky

2ð1þ q2
s k2
?Þ

~/k �
4iLnD

�1=2ð1þ q2
s k2
?Þ

X
k0

k0yðk� k0 � zÞ~/k
~/k�k0 ¼ Sk � Tk; ð8Þ
where ~/k are the (complex) Fourier harmonics of the potential. Sk are sources and Tk are sinks in k-space that may also be
added at this point for convenience. This set of ordinary differential equations (ODEs) are solved using a pseudo-spectral
method to evaluate the non-linearities. Time is advanced by the stiff solver within the VODPK package [28], which uses a
(diagonally, right-) preconditioned, Krylov implicit solver based on backward differentiation formulas of variable order
and timestep, that are tuned as the integration proceeds in order to keep the errors below a prescribed tolerance.

An example of a typical simulation is shown in Figs. 1 and 2. The first one shows a snapshot of the vorticity distribution in
the system at saturation (the local turbulent velocity is obtained from the potential via v ¼ r?/� ẑ, so that the vorticity is
given by w ¼ r2

?/). It illustrates a salient feature of a turbulent system – namely, the existence of eddies at multiple scales,
which non-linearly interact with each other. Also, the anisotropy introduced by the explicit dependence on ky of the model
can be noticed. Fig. 2 is a plot of the power spectrum that shows that the system is in a state of fully-developed turbulence
with most of the energy concentrated at low k values. If one computes the Lyapunov exponent of the system, it is large and
positive as expected. This is illustrated in Fig. 3, that shows the log-linear plot of the separation of two initially close trajec-
tories along the x and y directions with time, the slope of which gives the Lyapunov exponent.
4. Expected performance of the parareal algorithm

In order to gain some insight on what could be expected from the parareal algorithm (and, perhaps, also allow us to de-
sign an optimal coarse solver), we carry out in this section a small study on the performance of the model. Two regimes are
examined: the so-called strong and weak scaling regimes. In the strong one, the performance as a function of the number of
processors (denoted by N) is examined for a problem of fixed size in time. In the weak regime, the performance as a function
of N is considered as the problem is made longer, but keeping the part of the simulation done by a single processor constant.
In perfect parallelism, one should find that the speed-up in the strong scaling improves as N whilst, in the weak regime, one
finds that the work-per-processor remains constant as N is increased. Of course, in spatial parallelization these ideal scalings
are only maintained up to a certain number of processors, above which the serial part of the calculation (i.e. Amdahl’s law) or
the inter-processor communication dominate the calculation time. Due to the iterative nature of the parareal cycle, its strong
Fig. 1. Snapshot of vorticity for a typical BETA long-wavelength DTEM simulation.



Fig. 2. Power spectrum (in lin–log scale) for the same BETA simulation shown in Fig. 1.

Fig. 3. Separation of two initially close trajectories as a function of time for the same BETA simulation shown in Fig. 1. Both x (black) and y (red) directions
are included. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

D. Samaddar et al. / Journal of Computational Physics 229 (2010) 6558–6573 6563
and weak scalings are somewhat different, which sets this type of parallelization apart from spatial parallelization strategies.
We briefly discuss them in what follows.

4.1. Strong scaling

We first consider the case in which the problem to be solved is fixed in size or, in our case, the final time T that must be
reached at the end of the simulation is fixed. In the parareal algorithm, two propagators are used – G and F. Let the wallclock
time to solve the problem (even if much more inaccurately) serially using G be Tser

G ðTÞ, and to solve it serially with F, be
Tser

F ðTÞ. We then define the parameter b as the ratio of these two times:
b ¼ Tser
F ðTÞ

Tser
G ðTÞ

: ð9Þ
That is, b measures how much faster G is. Clearly, b > 1, as G is the cheap solver. In each cycle of the parareal algorithm, F is
applied in parallel with N processors for a period of the simulation DT = T/N, and G is run in serial for the whole length of the
simulation T. Thus, the total time to solve the problem can be estimated (ignoring overheads) as:
TPA ¼ ksðNÞ Tser
G ðTÞ þ

Tser
F ðTÞ
N

� �
; ð10Þ
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where ks(N) is the number of iterations of the parareal cycle required to achieve convergence, which is an unknown function
of N. Thus, the parallel speed-up factor (or gain) for the parareal algorithm is given by:
HPAðNÞ ¼
Tser

F ðTÞ
TPA

¼ ksðNÞ
1
b
þ 1

N

� �� ��1

: ð11Þ
Note that the typical strong scaling for spatial parallelization, H(N) = N, is only recovered when b ?1 and ks(N) = 1. But in
the parareal case, ks(N) will be a function of N and b will be finite. Success or failure of the parareal will depend on the value
for ks(N), which will depend itself on the choice of the coarse solver G. But even without knowing ks(N) at this point, several
things can be learnt from this model. First, b seems to roughly set the maximum number of processors for which the parareal
method yields any net parallel gain. For N much larger than this value, the serial part of the code dominates the calculation
and, as predicted by Amdahl’s law, performance deteriorates quickly (although our numerical simulations will show that this
statement needs to be somewhat revised!). Secondly, a net parallel gain is obtained only for as long as ks(N) < N. In the next
section we will construct a phenomenological model for this function based on the BETA simulations.

4.2. Weak scaling

We next consider the case in which the problem to be solved has a length T = N�DT, being DT fixed. That is, the problem
length increases linearly with the number of processors. As we said previously, in perfect parallelism one would expect that
the wallclock time required to do the simulation is independent of N, since its processor would be doing exactly the same
amount of work. That is,
W � TNðN � DTÞ
T1ðDTÞ ¼ 1; ð12Þ
where Tn(t) denotes the wallclock time needed to solve a problem of length t using n processors. In the parareal case, the time
needed to solve a problem of size N�DT using N processors is:
Tw
PA ¼ kwðNÞ N � Tser

G ðDTÞ þ Tser
F ðDTÞ

� �
; ð13Þ
from which the work for processor becomes:
WPAðNÞ �
Tw

PA

Tser
F ðDTÞ

¼ kwðNÞ 1þ N
b

� �
ð14Þ
Note that the function kw(N) is different from ks(N), since now T is not kept fixed. As before, the classical weak scaling for the
spatial case, WPA = 1, is only recovered if b ?1 and if kw(N) = 1. This will certainly not be the case. Again, it seems clear that b
roughly sets the maximum number of processors for which a favorable scaling for the work-per-processor should be ex-
pected, although how good the scaling would be ultimately depends on the form of kw(N). We will also use BETA simulations
to try to get its phenomenological form in the next section.
5. Results

In what follows, we describe the results of applying the parareal method to parallelize in time a typical BETA simulation
that implements the DTEM model as described in Section 3. The run used has a resolution of 385 � 385 (complex) modes in
Fourier space [i.e., (kx, ky), with kx and ky running between �kmax and +kmax, with kmax = 192], and corresponds to a restart
from an already non-linearly saturated run, in which the initial values of the mode amplitudes are read from a pre-existing
file. Turbulence is fully developed at this stage. All linearly unstable modes in the simulation have jkj < 70, value that roughly
sets the starting point of the dissipation range. Stability at higher k’s is ensured by using a hyperviscosity. The (modified)
parareal cycle has been implemented in BETA by making extensive use of subroutines from the Message Passing Interface
(MPI) libraries. The different solvers are added as separate subroutines (one for F, and as many as desired for all the G’s that
will be tested), and are called as required within the parareal cycle. The section is structured as follows: first, we will simply
describe a typical simulation to show that the method works. Secondly, we will use all the simulations we have done to con-
struct a phenomenological model for k(N,T), that gives the number of parareal cycles needed for convergence once N and T
are prescribed. We will use this function in the final two subsections, that describe the results of two scaling studies: one for
the strong scaling regime, and a second for the weak scaling one.

5.1. Parallelization in time via the parareal scheme of BETA simulations

As already mentioned in the previous section, the success of the parareal scheme depends on making a sound choice of G.
In fact, arguments could be made, based on the sensitivity to initial conditions and the exponential divergence of Lagrangian
trajectories present in turbulent situations, to the effect that such a choice should not exist in a turbulent system, and that
the parareal algorithm will inevitably need K = N iterations to converge when using N processors. The results presented and
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discussed in this section simply intend to show that this is not the case, and that convergence can be indeed achieved for
K	 N, which in itself is a quite remarkable result.

After exploring multiple options for G, we have found that one that seems to work pretty well is solving the problem using
a smaller resolution in k-space (that is, using a smaller kmax than F) and, in addition, changing the time-advance scheme to
something simpler with respect to the fine solver F. The smaller resolution allows us to use a much larger time step, dtG, for
the time advance (in comparison to that used by the fine solver, dtF). This, in combination with the simpler implementation
(for instance, we have tried 2nd and 4th Runge–Kutta (RK) schemes, in addition to the original VODPK scheme), allows us to
reach values of b as large as b � 1000. However, the best results (i.e., maximum parallel gain) are not obtained for the largest
b. The reason is that the strategies used to speed up G (and thus increase b) may also increase the number of cycles required
for convergence for a given number of processors N (i.e., the functions ks(N) and kw(N) from the previous section). For in-
stance, we have observed that if the region of k-space solved by G is too restricted (if kmax is too small), the parareal perfor-
mance deteriorates quickly. The minimum acceptable size seems to be imposed by the physics of the underlying turbulence:
the reduced k-space region must contain a sufficient number of dissipative scales!

We conclude this subsection by showing an example of a successful parallelization in time of a BETA simulation using the
parareal method. In Fig. 4, the time history of the total energy of a saturated BETA simulation is shown as a function of the
parareal cycle, k. The coarse solver used for G is a 4th-order RK scheme with dtG = 40dtF, and including only a reduced k-
space of size 201 � 201 harmonics (i.e., kmax = 100). The serial time of the simulation (that has a total length of
T = 7040dtF) using the fine solver is 2.62 h on the pingo supercomputer at the Arctic Research Supercomputing Center (ARSC)
at Fairbanks. The coarse solver G is about 200 times faster than F (in fact, b = 210.3). Using N = 88 processors (which corre-
sponds to time chunks of size DT = 80dtF), the parareal calculation converges in only K = 5 cycles (see inset in Fig. 4), requir-
ing only 0.29 h. That is, the parareal scheme yields a speed-up HPA = 8.80. In Fig. 5, we also show the time history of the
energy contained in one of the low-k modes (in particular, the (kx,ky) = (0,�1) mode), to show that convergence of the total
energy also implies convergence of the individual harmonics as previously stated. Similar behavior is also observed at
modes with higher k’s, at least until the contribution to the total energy of the mode gets of the order or smaller than
the required tolerance. Thus, there is no doubt that the parareal method can be applied successfully to fully-developed tur-
bulent simulations.

5.2. Phenomenological model for k(N,T) for the BETA model

We now carry out the first step in the determination of two unknowns of the performance model from BETA simulations:
ks(N) (strong scaling) and kw(N) (weak scaling). That step is the building of a model for k(N,T), the number of parareal cycles
needed to converge a simulation of length T using N processors (the chunk size is then DT = T/N).

We proceed as follows. First, we use the simulations to ‘measure’ the convergence rate function, Dn(k;N,T), defined as the
number of new, successive time chunks converged during the parareal cycle k. We have collected this information for many
runs with various values of length T and number of processors N, and using various implementations for the coarse solver G.
Interestingly, all of them seem to follow the same pattern, that is sketched in Fig. 6: at first only one chunk (the minimum
possible, since that is the rate at which the F solution advances!) is converged per cycle for the first k1 parareal cycles. Then,
after k > k2 cycles (k2 > k1), the convergence rate is again roughly constant, but equal to some value B > 1. In the intermediate
region, i.e. for cycles k1 < k < k2, we assume that the convergence rate is described by a linear model. That is:
Fig. 4.
solver i
Total energy as a function of time for a BETA run using N = 88 processors and chunk size DT = 80 as a function of the parareal cycle index k. Coarse
s a 4th order Runge–Kutta described in Section 5. Convergence is observed at k = 5. Inset: Relative error averaged over all chunks as a function of k.



Fig. 5. Convergence history of the energy contained in the low-k mode (kx, ky) = (0, �1) as a function of the parareal cycle index k for the same run as Fig. 4.
Inset: Relative error averaged over all chunks as a function of k.
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Fig. 6. Sketch shows the typical features of the convergence rate function Dn(k;T,N) observed in the BETA simulations discussed in Section 5.
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Dnðk; N; TÞ ’
1; k 6 k1;

1þ B�1
k2�k1

	 

ðk� k1Þ; k1 < k < k2;

B; k P k2;

8>><
>>: ð15Þ
where the slope of the linear part is m = (B � 1)/(k2 � k1). To find k(N,T) from Eq. (15), one first computes n(k;N,T), the accu-
mulated number of converged time chunks via integration of Dn(k;N,T):
nðk; N; TÞ ¼

k; k 6 k1;

kþ 1
2

B�1
k2�k1

	 

ðk� k1Þ2; k1 < k < k2;

Bk� B�1
2 ðk2 þ k1Þ; k P k2;

8>><
>>: ð16Þ
Finally, one inverts n(k;N,T) = N to get:
kðN; TÞ ¼

N; N 6 N1;

k1 þ k2�k1
B�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðB� 1Þ N�k1

k2�k1

q
� 1

n o
; N1 < N < N2;

N
B þ B�1

2B ðk2 þ k1Þ; N P N2;

8>><
>>: ð17Þ
where N1 = k1 and N2 = [(B + 1)k2 � (B � 1)k1]/2.
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However, Eq. (17) is still not very useful at this point because the values of k1, k2 and B change with T and N, even when the
coarse solver G remains unchanged. An important observation at this point is that these values seem to be roughly constant
when the simulations keep DT fixed and use the same coarse solver. For example, Fig. 7 shows the convergence rate func-
tions Dn(k;T,N) for various runs done using as G the same VODPK stiff solver as for the fine solver F, but including only
145 � 145 modes (i.e., kmax = 72) and dtg = 4dtF (i.e., b = 16.3) [of course, there are important fluctuations around the mean
values, but that is also a consequence of the fact that one must take discrete derivatives to compute them]. This observation
suggests that maybe one can find more universal quantities if k1, k2 and B are expressed in physical time units. And indeed,
we have found that for each fixed solver G, t1 � N(k1)�DT, t2 � N(k2)�DT and b = B�DT (that is, expressed in units of dtF, our
physical timescale) are roughly the same for all the simulations. An example is shown in Fig. 8. The inset shows the conver-
gence rate functions Dn(k) obtained again with the VODPK stiff solver as G for simulations with various chunk sizes and
number of processors. They have a general shape similar to that sketched in Fig. 6, but the parameter values are all different.
However, when expressed using physical units, all of them collapse to the same universal curve. What these observations
suggest is that there appears to be two timescales (t1 and t2) that must be resolved before the scheme can transition from
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Table 1
Values of parameters defining k(N) model in physical units (see Eq. (17)) for the three different coarse solvers discussed in Section 5.

G kmax dtF/dtG b t1 t2 b

VODPK 72 4 16.3 290 ± 60 4120 ± 500 1320 ± 280
RK2 100 8 84.3 32 ± 32 3100 ± 1600 1340 ± 480
RK4 100 40 210.3 80 ± 80 2560 ± 1000 1280 ± 480
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a slow (i.e., 1 chunk per cycle) to a fast convergence rate b which is independent of DT, or T, or N, once the coarse solver is
chosen.

Thus, the values of {t1, t2, b, b} seem to be a good practical way to characterize each G in the parareal context. We have
collected in Table 1 the values of these quantities for the three coarse solvers discussed in this paper; (1) the VODPK solver
with kmax = 72 and dtG = 4dtF just discussed; (2) a 4th-order RK with kmax = 100 and dtG = 40dtF; and (3) a 2nd-order RK with
kmax = 100 and dtG = 8dtF. The last two coarse solvers will be used in the strong and weak scaling sections. Once t1, t2 and b are
known (for the coarse solver G chosen), the model for k(N,T) given by Eq. (17) can be completed via the inverse relations:
k1ðN; TÞ ¼
t1N
T
;BðN; TÞ ¼ bN

T
; ð18Þ

k2ðN; TÞ ¼ 2
t2N
T
þ bN

T
� 1

� �
t1N
T

� �
=

bN
T
þ 1

� �
: ð19Þ
5.3. Strong scaling study

We are now in a position to discuss the strong scaling properties of the parareal method when applied to the BETA runs.
We start by deriving an expression for ks(N) from Eq. (17). To do that, it is sufficient to require that T, the length of the sim-
ulation, be fixed. The result depends on how T compares with the other two timescales present, t1 and t2:
ksðNÞ ¼

N; T < t1;
t1
T N þ Rðt1; t2; b; T;NÞ; t1 < T < t2;

T
b þ

bN
T �1

bN
T þ1
ðt2

b þ
t1
T NÞ; T P t2;

8>><
>>: ð20Þ
where the complicated function for the transition range of T’s is given by:
Rðt1; t2; b; T;NÞ �
2ðt2 � t1Þ N

T

bN
T

� �2 � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bN

T

� �2

� 1

 !
ðT � t1Þ
t2 � t1

vuut � 1

8<
:

9=
;: ð21Þ
Although we will use the full Eq. (20) to compute the theoretical gains to compare with the simulation results, it is useful
to examine this equation in several limits. First, one easily notes that if the simulation is so short that T < t1 then parareal fails
completely since it will converge at a rate of one chunk per cycle, thus needing K = N to converge. Indeed, the speed-up factor
(Eq. (11)) becomes,
HT<t1
PA ðNÞ ¼

b
N þ b

� �
< 1: ð22Þ
Luckily, most actual applications will be in the opposite limit, T
 t2 (since the interest is in doing very long simulations of
transport dynamics). Note that the imprint of having to resolve t1 one chunk at a time is still present in Eq. (11), (appears as
t1N/T), but it is not always deleterious for performance. In fact, its effect is small as long as N	 Ns � T2/bt1, which separates
one regime in which the parareal cycle converges roughly in a constant number of cycles from another where the number of
cycles required increases with N. Clearly, the transition occurs when N gets large enough so that the resolution of t1 dom-
inates the convergence process. But luckily, note that this transition occurs at a rather large number of processors in practical
cases, since Ns / T2. Assuming bN/T
 1, b	 Ns and T
 t2, conditions that will be almost always satisfied in very long sim-
ulations, three asymptotic regimes can be identified:
HT
t2
PA ðNÞ �

b
T

� �
N; N 	 b;

bb
T ; b	 N 	 Ns;

bT
t1

	 

1
N ; N 
 Ns:

8>><
>>: ð23Þ
That is, the speed-up of the strong scaling increases first linearly with N as in the spatial parallelization ideal scaling, but note
that the slope is in general smaller than unity, b/T. The other aspect that is quite different from the spatial scaling laws is that,
for a wide range of processors (between b and Ns), the speed-up saturates at a roughly constant maximum value, �bb/T.
Thus, N � b sets the value of N at which the speed-up no longer improves as we predicted, but it may take a much larger
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number of processors to observe deterioration of the wallclock time. The reason is that, in this regime, the wallclock time of
the calculation is completely dominated by the number of times that the coarse solution with G must be applied serially! The
efficiency of the parallel part of the algorithm is of no importance at this stage. Finally, when the resolution of t1 at one chunk
at a time becomes the dominant process, the speed-up deteriorates as �1/N.

The analytical considerations compare well with actual numerical calculations of a strong scaling sequence, although the
asymptotic formulas tend to overestimate actual results. As an illustration we present two such numerical strong scaling
studies in Figs. 9 and 10. The first study corresponds to a BETA simulation with length T = 6400dtF, using as coarse solver
the 2nd-order RK previously mentioned (see Table 1). The aforementioned linear phase is observed up to N � 100. The max-
imum speed-up obtained in the simulations is slightly below 11 using N = 400 processors, and it should be noted that the
speed-up varies very little above N ’ 100. For this case, the theoretical values obtained are b � 84.29 and Ns � 800, again
in agreement with the simulations. However, note that the saturated speed-up predicted by the asymptotic formula Eq.
(23) is Hmax

PA � 17:6, which is larger than the one observed. The reason for the discrepancy must be sought in the fact that
the conditions to derive Eq. (23) are not satisfied in this example, since the simulation is too short ant T is only slightly larger
than t2 (see Table 1). In fact, when using the full model for ks(N), the agreement is much better, as shown in Fig. 9.

The second example corresponds to a BETA simulation with length T = 25,600dtF, that has been done using as coarse sol-
ver the 4th order RK previously mentioned (see Table 1). The maximum speed-up observed in this case is slightly above 5,
using N ’ 300 processors, but it should be noted that the speed-up value does not seem to be yet close to saturation. And
Fig. 9. Results of strong scaling study using as coarse solver G the 2nd-order Runge–Kutta solver described in Section 5. Model curve for gain corresponds to
values from Table 1.

Fig. 10. Results of strong scaling study using as coarse solver G the 4th-order Runge–Kutta solver described in Section 5. Model curve for gain corresponds
to values from Table 1.
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indeed, one finds from the asymptotic formulas that b � 210.3 and Ns � 3000 in this case, with a maximum speed-up of
roughly Hmax

PA � 10. We thus expect that we could do somewhat better with more processors in this second case.

5.4. Weak scaling

We now proceed to analyze the weak-scaling properties of the parareal scheme implemented in BETA. The figure-of-mer-
it here is, as previously described, the amount of work per processor WPA defined in Eq. (12). To obtain kw(N) it is sufficient to
assume that DT is fixed, and that the length of the simulation is T = N�DT. In this case, the process is trivial because all the
relevant quantities,
Fig. 11.
Table 1
k1 ¼
t1

DT
; B ¼ b

DT
; ð24Þ

k2 ¼ 2
t2

DT
þ b

DT
� 1

� �
t1

DT

� �
b

DT
þ 1

� ��
ð25Þ
are all constants that do not change when the number of processors. Thus, kw(N) is given exactly by Eq. (17).
As in the case of the strong scaling, asymptotic formulas can be derived to better interpret the results. Two regimes can be

distinguished depending on the value of T. First, we consider the case when N is not large enough to resolve t1,N < t1/DT.
Then, kW(N) = N, and the work-per-processor is:
WT<t1
PA ðNÞ ¼ N 1þ N

b

� �
> N; N < t1=DT: ð26Þ
which is larger than N, signaling a complete failure of parallelism, as expected.
But again the limit of interest for applications is when N is large enough so that T
 t2. Then, assuming T
 t2 and b > DT,

the resulting work-per-processor becomes:
WT
t2 ðNÞ � DT
b

� �
N þ t1

DT

 �
1þ N

b

� �
: ð27Þ
As in the strong limit case, the imprint of having to resolve t1 still appears here (the t1/DT term). But now, since DT is pre-
scribed, this term will be unimportant once N
 Nw � (bt1)/(DT)2. Thus, assuming also that b
 Nw, one can easily distin-
guish three asymptotic regimes:
WT
t2
PA ðNÞ �

t1
DT ;

t1
DT 	 N 	 Nw;

DT
b

� �
N; Nw 	 N 	 b;

DT
bb

	 

N2; N 
 b:

8>><
>>: ð28Þ
That is, the work-per-processor is first constant as in the ideal spatial parallelism case, although the value is usually greater
than unity. And it does not imply good parallelism: only that the fixed amount of work needed to resolve t1 dominates the
calculation. But once N > Nw, the work-per-processor begins to increase linearly, in contrast to the spatial case. The slope is
simply given by DT/b, as expected, since (DT/b)N gives roughly the number of parareal cycles needed to converge in this
Weak scaling study for series of runs done using the 4th-order Runge–Kutta solver described in Section 5. Model curve corresponds to values from
.



Fig. 12. Parallel gain for weak scaling series of runs using the 4th-order Runge–Kutta solver described in Section 5. Model curve plotted corresponds to
values from Table 1.
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regime, and the number of times each processor has to repeat the serial work. Finally, for N
 b, things deteriorate and the
work-per-processor increases quadratically with N.

To illustrate this behavior, we have also carried out a numerical weak scaling study using as coarse solver the 4th order RK
previously mentioned and with a prescribed chunk size DT = 80dtF. The work-per-processor as a function of the number of
processors is shown in Fig. 11. The first two regimes of Eq. (28) can be clearly seen in the figure. First, the work-per-processor
stays roughly constant at about �4 up to N � 40. Then, it increases close to linearly at least until N � 300–400 with a slope
�0.10 < 1, indicating that weak parallelism is different from the ideal one but not that bad. It is interesting to compare these
numbers with the predictions of the asymptotic formulas. For these runs, the asymptotic expressions just derived predict
that Nw � 17 and b � 210.3, consistent with the extent of the linear scaling in W seen in the numerical observations. The
slope predicted by the model would be �0.06. On the other hand, the constant value at the smallest N would be �1 or 2.
Again, as in the strong scaling case, these formulas tend to overestimate performance slightly. For completeness, we have
also included a figure (Fig. 12) with the speed-up of the calculations, although note that the length of the simulation is
increasing with N. The largest speed-up observed in this series is �9 using N = 88 processors, corresponding to the case cited
as example at the beginning of this section.
6. Conclusion

The two main conclusions of this work are that turbulent simulations can be parallelized in time using the parareal algo-
rithm, and that rather sizeable gains are achievable with this method. Indeed, we have shown speed-ups close to an order of
magnitude, and even these could be further increased by further optimization of the coarse solver. As we mentioned several
times, this is a remarkable result in view of the many existing concerns regarding the effect of the sensitivity to initial con-
ditions and exponential Lagrangian divergence on the convergence of the method. In fact, it has turned out that parareal may
probably work better here than in non-turbulent systems, since convergence only needs to be enforced on a single scalar
quantity (here, the total energy), and the whole spectrum (containing hundreds of thousands of degrees of freedom) also
converges even when unforced (at least, up to modes with an energy larger than the required convergence tolerance) due
to the existence of strong nonlinear couplings between any pair of modes. This is indeed a pretty remarkable result.

We have also applied the technique to the DTEM model including only the polarization non-linearity instead of the E � B
non-linearity which is to be discussed in a future paper. In that case, a direct parallel can be drawn between that model and
the quasi-geostrophic equation for neutral fluids. This makes it likely that the technique will be readily applicable to neutral
fluid turbulence as well.

In this work, we have also shown that it is possible to select a coarse solver that works for this type of problems based on
using a reduced grid size in k-space, accompanied by a coarser timestep and a simpler time-advance scheme. We have also
characterized the performance of the method using a model function for k(N,T), the number of parareal cycles required to
converge that, for the BETA simulations examined here, depends on four quantities: b, t1, t2 and b. Clearly, performance de-
pends more sensitively on b and b. The larger they are, the larger the parallel speed-up will be. A matter of investigation for
the future will be to investigate the origin and meaning of all these parameters. That is, to clarify whether their values are
imposed by the physics of the underlying turbulence or by the choice of the coarse solver and its relation with the fine one.
This knowledge would allow us to further optimize the parareal implementation inside BETA to obtain further gains. More
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importantly for other applications, we also plan to repeat the current exercise in other turbulent models, in order to see if the
model function found phenomenologically for k(N,T) has a universal character, or whether the shape used here is only par-
ticular to the DTEM case and the E � B-nonlinearity.

Other possibilities can and should also be, and in fact is being, explored in the future for further improvement in the gain
and efficiency. For instance, a better G (i.e., larger b and b) than the ones used here may be an option. It may be noted here,
that a faster G (i.e., larger b) will not necessarily mean a better one, unless the number of iterations required for convergence
remains small enough (i.e., larger b as well) so that the total time for simulation is reduced. A combination of both space and
time parallelization, thus leading to hybridization of the parallel scheme, should certainly be explored, since it may help to
better utilize already existing resources. Time parallelization adds an additional domain for parallelizing.

A small load imbalance was observed when running the part with the fine solver in the parareal algorithm, but it did not
appear to significantly affect the results. However, improving the algorithm in this regard may also be considered as an
important future work. The load imbalance probably appeared due to the particular solver (VODPK) used, which uses adap-
tive time stepping and will therefore depend on the dynamics in the individual time chunks. A solver with fixed time steps is
likely to improve this issue. But the price of having to solve all chunks with constant time steps might then be to use the
timestep (dt) which is needed to solve the chunk in which the fine structures appear (smallest dt), which is not necessarily
a good thing. So, a ‘‘fixed timestep solver” will avoid load imbalancing, but it is not likely to make it more efficient.

Also, it is worth noting that the current implementation of the parareal algorithm requires processors where convergence
has been observed to remain idle until the solution along the entire time domain is converged. Reuse of idle processors may
thus enhance the efficiency of the parareal scheme.
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